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ABSTRACT
Generative models have shown great promise in synthesizing high-
quality time-series data that resemble the sensor data generated
by mobile and IoT devices, but do not reveal the user’s private
attributes. These synthesized data can be treated as the obfuscated
version of the sensor data and sent to downstream applications.
However, existing obfuscation techniques that rely on generative
models require the user to enumerate all inferences they deem
intrusive. This black-listing approach would inevitably result in
privacy loss if the definition of intrusive inferences changes after re-
leasing the obfuscated data. In this work, we propose a white-listed
approach to sensor data obfuscation based on a guided denoising
diffusion model and a surrogate model for the desired inference. We
evaluate this obfuscation model on a human activity recognition
dataset and show that the proposed obfuscation model provides an
acceptable privacy-utility trade-off, without assuming knowledge
of the private attributes.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Se-
curity and privacy → Privacy protections.
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1 INTRODUCTION
Recent years have witnessed an increase in the number of mobile
IoT devices equipped with a wide range of sensors. The rich data
captured by these sensors are often shared with third-party appli-
cations and cloud service providers for enhanced user experience,
personalized services, or storage. While the service provider is gen-
erally trusted to faithfully perform the desired computation, it may
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simultaneously perform intrusive inferences on this data, for ex-
ample, to extract and monetize users’ private information. Sharing
raw sensor data with this honest-but-curious (HBC) server poses
significant privacy risks to users. For example, several studies have
shown that motion data collected by sensors in smartphones and
wearables can be used to infer sensitive information about the user,
such as their gender, age, and weight [6, 15]. This calls for designing
effective privacy-preserving methods that can be deployed on mo-
bile IoT devices to obfuscate sensor data before they are released to
a third-party application or service provider (e.g., a fitness tracking
app running on the mobile device or in the cloud).

Anonymization of sensor data streams gives rise to several im-
portant challenges. First, sensors do not directly output specific
attributes of a user. They rather generate time-series data from
which these attributes might be inferred using appropriate signal
processing or machine learning techniques. As a result, privacy-
preserving techniques, such as differential privacy (DP), cannot
be readily applied to sensor data streams to limit the disclosure of
private attributes that are not explicitly included in the dataset, i.e.,
DP noise must be added to private attribute information contained
in sensor data without affecting public attribute information [23].
Moreover, obfuscation techniques must be computationally effi-
cient; otherwise, they cannot run on battery-powered mobile IoT
devices in real-time. Thus, secure multi-party computation based
techniques are not well-suited for this application. Finally, the time-
series data usually contain patterns that correlate with both private
(e.g., age) and non-private (e.g., hand gesture) attributes of the user.
The entanglement between private and non-private attributes leads
to a trade-off between data utility and privacy loss because manip-
ulating these patterns would reduce the accuracy of desired and
unwanted inferences at once.

To address these challenges and provide a reasonable trade-off
between utility and privacy of sensor data streams, various machine
learning techniques have been used in prior work. In particular,
adversarial machine learning has been used to collaboratively train
multiple neural networks to extract privacy-preserving feature
representations from sensor data [12–14]. The downside of this
approach is that it requires a complete redesign of existing appli-
cations so that they ingest the extracted features instead of raw
sensor data. In another line of work, data obfuscation techniques
have been developed by taking advantage of an encoder-decoder
architecture. For example, anonymization autoencoder (AAE) [15],
ObscureNet [7], and Olympus [19] utilize autoencoders trained in
an adversarial fashion to generate novel time-series data that can be
used in desired inferences but deteriorate the accuracy of unwanted
inferences. To train these architectures, users must specify one or
more attributes that they wish to detect by sending their data to the
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third-party service provider, in addition to one or more attributes
that they wish to conceal from that service provider. We call the
former type of attributes public (non-private) attributes and the lat-
ter ones private attributes. In the fitness tracking example, activity
is the public attribute and gender, age, and weight may be listed
as private attributes. While these obfuscation networks generate
time-series data in the original input space and therefore can be
readily consumed by existing applications, users are expected to
specify all private attributes they wish to conceal, in addition to
the public attribute(s). However, the definition of private attributes
could change over time, and users cannot always foresee these
changes. Hence with this black-listing approach, it is impossible
to control the leakage of information about a new set of private
attributes once the obfuscated sensor data are released.

We propose a white-listing approach to sensor data obfuscation,
requiring users to specify only the public attribute(s) they wish to
detect by using a third-party application or service.1 The design
of this obfuscation model is inspired by the denoising diffusion
model [5, 8, 9, 21] – a generative AI model that achieves superb
performance in the image synthesis task and exhibits better training
stability than the generative adversarial network (GAN). In the
forward diffusion process, a small amount of Gaussian noise is
added to the sensor data in each timestep, so after a sufficiently large
number of timesteps, the sensor data becomes identical to isotropic
Gaussian noise. This process can be reversed by training a machine
learning model to predict the noise introduced in each timestep,
making it possible to synthesize sensor data from randomly sampled
noise, which is the backward diffusion process. Our intuition is that
by controlling the backward diffusion process, we can condition
the diffusion model and guide it toward generating a copy of sensor
data that contains information about the same public attribute as
the original data, thereby ensuring high data utility. Since we do not
impose any constraint on other attributes, they will be randomly
sampled from the underlying distribution in the training set. So
long as the distribution of other attributes is diversified in the
training set, the synthesized data does not strongly correlate to a
specific private attribute class and an HBC adversary can achieve
an intrusive inference accuracy near the random guessing level.
Our contributions are as follows:

• We design an obfuscation model using a diffusion model
conditioned with latent representations that contain infor-
mation about the public attribute(s). These representations
are extracted from the original sensor data using a pretrained
surrogate utility model. We show that a simple surrogate
model can aid in generating obfuscated data that will be
consumed by potentially more sophisticated utility models.

• We evaluate the proposed obfuscation model on a human
activity recognition dataset and compare it with two ob-
fuscation baselines that black-list a few user-specified pri-
vate attributes. Our model maintains high data utility and
achieves competitive privacy-preserving performance com-
pared to the baselines, without having a priori knowledge
of the private attributes.

1Note the definition of the public attribute(s) remains unchanged as long as sensor
data are sent to the same application. For example, in the context of fitness tracking,
human activity is the public attribute naturally.

• We outline multiple open research challenges pertaining to
white-listed sensor data obfuscation and potential solutions
that must be investigated in future work.

To our knowledge, this paper is the first to explore the feasibility
of obfuscating sensor data using a guided diffusion model. The
proposed white-listing approach elevates the practicality of black-
listed obfuscation by eliminating the need for specifying private
attributes and enabling future-proof privacy protection.

2 RELATEDWORK
Privacy-aware feature extraction. On-device sensor data obfuscation
techniques have garnered considerable attention owing to the re-
cent progress in deep learning and the growing computing power
of mobile IoT devices. A notable class of obfuscation techniques
extracts a small number of features from sensor data such that
these features do not contain sensitive information, thus they can
be released in lieu of the original sensor data. Liu et al. [14] propose
Privacy Adversarial Network (PAN) that utilizes an encoder to ex-
tract feature representations that do not contain private information
through adversarial training. Li et al. propose DeepObfuscator [13]
by training a convolutional neural network (CNN) comprising a
feature extractor and the desired task classifier, together with two
adversarial network components designed to reconstruct data and
predict private attributes. TIPRDC [12] trains a feature extractor
through an adversarial game to conceal private attributes. It main-
tains data utility by maximizing the mutual information between
raw data and the combination of the private attribute and extracted
feature. Since these works focus on extracting privacy-preserving
feature representations, developers must update their application
for it to be compatible with the obfuscated features.

Obfuscation through the lens of generative AI. Another line of
work generates novel sensor data in the same space as the original
sensor data by obfuscating sensitive information that it contains.
Malekzadeh et al. [15] propose the use of an autoencoder-based
architecture and multiple regularizers to conceal private attributes
in the latent space of an autoencoder. Hajihassani et al. [7] propose
ObscureNet that collaboratively trains a conditional variational
autoencoder and an auxiliary network in an adversarial fashion
to obscure private information in the latent space. Yang et al. [24]
explain how a similar conditional variational autoencoder can be
trained on decentralized data, possibly owned bymany clients, to of-
fer privacy protection during the generative model training process.
Olympus [19] trains an autoencoder that optimizes both utility loss
and inference accuracy to obfuscate data while maintaining its util-
ity. These models retain the original data format, allowing existing
applications to seamlessly consume the obfuscated data. However,
these techniques require users to define a set of private attributes
they wish to protect, which is equivalent to black-listing the respec-
tive inferences. Hence, the data obfuscation model trained by these
approaches can hardly be extended to protect other attributes that
users might consider private at a later time. On the contrary, our
work explores a white-listed data obfuscation technique grounded
on the diffusion process, which not only preserves the original data
format for maximum compatibility with legacy applications, but
also offers privacy protection for nearly all attributes apart from
the ones considered public.
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Guiding diffusion models for data synthesis. Recently, genera-
tive models based on the diffusion process [8, 11, 20] have gained
tremendous attention for their superior performance in generat-
ing high-quality, novel images, and a more stable training process
than GAN-based models. Ho et al. model the diffusion process
as a Markov chain and propose Denoising Diffusion Probabilis-
tic Models (DDPM) [8]. To accelerate the synthesis process, Song
et al. [21] propose Denoising Diffusion Implicit Models (DDIM)
that model the diffusion process as a non-Markov process, enabling
one-step computation for any timestamp. To further improve the
quality and control the content of the synthesized data, different ap-
proaches to guide the data generation process have been proposed
in the literature [5, 9, 16]. Dhariwal et al. [5] introduce the notion
of classifier-guided conditioning, which uses the gradients of an
auxiliary classifier to condition the diffusion model on the class in-
formation. However, training such an auxiliary model under noisy
conditions can be challenging and computationally intensive. Ho
et al. [9] propose classifier-free conditioning, which directly condi-
tions the diffusion model using the class label. Similarly, Preechakul
et al. [17] propose using the latent representations learned from
a semantic encoder to condition a DDIM. Other researchers have
been utilizing pre-trained image-language models, such as Con-
trastive Language-Image Pre-Training (CLIP) [18], to guide the
image generation process using text prompts [10, 16].

Unlike the classifier-guided diffusion model that utilizes the gra-
dients computed by a classifier [5], our generative model takes
advantage of the latent representation extracted by a pretrained
auxiliary classifier to condition the backward diffusion process. It
also differs from the classifier-free guidance approach [9] in two
ways. First, in classifier-free guidance, only class labels are used
as the condition variable. This reduces the dependence of the syn-
thesized data on the original data and limits its ability to generate
time-series that resemble sensor data that contains information
about the same public attribute. Second, Ho et al. [9] simultane-
ously train a diffusion model with and without the condition, and
use a convex combination of the output of the twomodels to control
the diversity and quality of the synthesized data samples. In our
implementation, we train the conditioned diffusion model only to
avoid introducing excessive noise to the synthesized data.

3 DIFFUSION-BASED DATA OBFUSCATION
We present the architecture of our diffusion-based obfuscation
model. The model is comprised of a denoising diffusion model
and one (or multiple) auxiliary module(s). The denoising diffusion
model learns to synthesize sensor data samples (i.e. time-series seg-
ments) by gradually denoising a randomly sampled Gaussian noise.
To enable white-listed data obfuscation, we guide the synthesis
process using only conditions that correspond to the user-specified
public attribute(s). We assume the obfuscation model is trained
on data gathered from a sufficiently diverse population, therefore
any unspecified attribute in the synthesized data can be considered
randomly sampled from the underlying distribution in the training
set. For each public attribute white-listed by the user, we adopt an
auxiliary classifier that acts as a surrogate of the model used in the
third-party application that will consume the obfuscated data to
predict the public attribute. The model adopted by third-party appli-
cations is presumably more accurate than the auxiliary classifier we

Figure 1: Diffusion process of the white-listed data obfus-
cation. The first 2D array (𝑥0) is the original multi-channel
sensor data segmented using a fixed size window, i.e. rows
are sensor channels and columns are time instants.

use to train the diffusion model. We refer to this auxiliary classifier
as the surrogate utility model. The first layers of the surrogate utility
model (i.e. the encoder module) compresses the original sensor data
into a latent representation that corresponds to the public attribute.
This representation helps the diffusion model properly denoise and
synthesize a sensor data sample that contains information about
the same public attribute as the original data sample.

3.1 Conditional Denoising Diffusion Model
We build our conditional denoising diffusion model based on the
recently proposed diffusion model with classifier-free guidance [9].
Specifically, for a forward diffusion process of 𝑇 timesteps, a small
amount of Gaussian noise is sampled and added to the input sensor
data at every timestep. We denote the raw sensor data as 𝑥0 and its
distribution as 𝑥0 ∼ 𝑞(𝑥0). The amount of added noise is modeled
using a variance scheduler 𝛽 , where 0 < 𝛽1 < 𝛽2 < ... < 𝛽𝑇 < 1. For
simplicity, a linear scheduler [8] that starts from 0.0001 and ends at
0.02 with 𝑇 = 1000 is used in our implementation. We model the
diffusion process as a Markov process, i.e., DDPM. The noisy data
at timestep 𝑡 of the forward diffusion process can be written as:

𝑝 (𝑥𝑡 |𝑥𝑡−1) = N(
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I). (1)
However, using the above formula, the data at timestep 𝑡 strictly de-
pends on the previous timestep 𝑡 −1, hence requiring precomputing
and storing the data at all time steps. To address this issue, Equa-
tion 1 can be written as depend only on the input 𝑥0 by introducing
𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼 =

∏𝑇
𝑡=1 𝛼𝑡 :

𝑝 (𝑥𝑡 |𝑥0) = N(
√
𝛼𝑥0, (1 − 𝛼)I) . (2)

By further applying the reparameterization, we can write 𝑥𝑡 as a
closed-form expression w.r.t. 𝑥0 and 𝜖 as:

𝑥𝑡 =
√
𝛼𝑥0 +

√
1 − 𝛼𝜖, (3)

where 𝜖 follows a Gaussian distribution 𝜖 ∼ N(0, I). Thus, for
sufficiently large 𝑇 , 𝑥𝑇 will be nearly an isotropic Gaussian.

The intuition of the diffusion model is that, by reversing the
forward diffusion process, one can reconstruct the raw data 𝑥0
by sampling 𝑥𝑇 from a Gaussian distribution 𝑥𝑇 ∼ N(0, I). The
goal of 𝑞(𝑥𝑡−1 |𝑥𝑡 ) needs to be estimated using a neural network
model 𝑝𝜃 considering it is intractable. When the noise schedule 𝛽 is
sufficiently small, 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) can also be considered as a Gaussian
distribution, hence we have

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)), (4)
where 𝜇𝜃 and Σ𝜃 are the approximated mean and variance, re-
spectively. In this work, we follow Ho et al. [8] by simplifying the
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variance using the fixed 𝛽2
𝑡 as well as applying the reparameteri-

zation trick on the mean, then using a neural network model to
predict the noise 𝜖 added to the data rather than optimizing 𝑝𝜃 .
However, without properly guiding the diffusion model, the recon-
structed data can contain information about the public attribute of
any random class, which does not serve the purpose of white-listed
data obfuscation. Therefore, we aim to introduce a condition 𝑧 dur-
ing the backward diffusion process to guide the diffusion model
toward generating a data sample that strongly correlates to the
same public attribute of the raw data 𝑥0. We provide more details
about how we obtain the condition 𝑧 in Section 3.2. The model used
to predict the noise can be expressed as 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧). We implement
𝜖𝜃 based on an open-source UNet architecture released by Ope-
nAI [3]. The timestep 𝑡 is first embedded using positional encoding
techniques proposed by Vaswani et al. [22], then the embedded
timestep 𝑡 and condition 𝑧 are projected through a linear layer into
𝑦𝑡 and 𝑦𝑧 , respectively. 𝑦𝑡 and 𝑦𝑧 are conditioned to the UNet using
the adaptive group normalization (AdaGN) technique proposed by
Dhariwal et al. [5]:

AdaGN(ℎ,𝑦) = 𝑦𝑡GroupNorm(ℎ) + 𝑦𝑧 , (5)
where ℎ is the output of the first convolutional layer in the UNet’s
residual block. The predicted noise will be compared with the noise
introduced in the forward diffusion process and optimized through
a mean squared error (MSE) loss:

L𝜃 = ∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧)∥2
2 = ∥𝜖 − 𝜖𝜃 (

√
𝛼𝑥0 +

√
1 − 𝛼𝜖, 𝑡, 𝑧)∥2

2, (6)
where 𝑥0 is the raw sensor data, 𝜖 is the noise randomly drawn from
the Gaussian distribution 𝜖 ∼ N(0, I), 𝑡 is the timestep uniformly
sampled between 1 and 𝑇 .

Once the diffusion model is trained, white-listed obfuscation can
be performed by sampling a noisy data point 𝑥𝑇 from a Gaussian
distribution and denoising it following the backward diffusion pro-
cess. The original sensor data is fed into the surrogate utility model
to extract latent representations of the public attribute to guide the
obfuscation process. The obfuscation model outputs a sensor data
segment that shares similar public attribute information as the raw
sensor data but corresponds to arbitrary private attributes.

3.2 Surrogate Utility Model and Decoder
To achieve white-listed obfuscation, the data generated by the dif-
fusion model must correlate with the public attribute 𝑦 that can be
inferred from the raw sensor data 𝑥0. Without proper guidance, a
vanilla diffusion model would blindly sample from the entire train-
ing dataset and generate data samples corresponding to possibly
different public attribute classes than the user’s actual public at-
tribute. Therefore, for each user-desired public attribute, we adopt
an auxiliary surrogate utility model 𝑓𝜙 (𝑥0), parameterized by 𝜙 ,
to extract feature representation 𝑧 that is specific to the public at-
tribute of 𝑥0, and use it as the condition to guide the generation of
obfuscated data. The surrogate utility model is trained to predict
the public attribute class 𝑦 from the raw sensor data 𝑥0. To obtain
the public attribute condition 𝑧, we run attribute inference using a
pretrained model 𝑓𝜙 on 𝑥0 and collect the output before the last fully
connected classification layer. In our work, we adopt a convolu-
tional neural network-based encoder architecture as the surrogate
utility model. We illustrate the workflow of extracting the public
attribute condition in Figure 2. Note that the surrogate utility model

Figure 2: Guiding the diffusion-based obfuscation model.

can have any arbitrary architecture, and the optimal architecture
should be determined based on the characteristics of the specific
dataset. We also argue that the obfuscated data generated by a
simple surrogate utility model can be used by more complicated
target models offered by service providers and we demonstrate the
results in Section 4.

The surrogate utility model is comprised of two stacked con-
volutional layers to extract feature maps from the multi-channel
sensor readings, with each convolutional layer followed by a ReLU
activation function. The two convolutional layers use 16 and 32
kernels of size 2, respectively. The convolutional feature maps are
then flattened and fed to three stacked fully connected (FC) layers,
each followed by a ReLU activation function. The three stacked
FC layer gradually scales down the feature map to a size of 512,
128, and 5, respectively. Lastly, a fully connected classification layer
with a softmax activation function maps the latent feature 𝑧 to the
probability distribution of public attribute classes.

We use the cross-entropy loss and Adam optimizer to train the
surrogate utility model:

L𝜙 = −
𝐶∑︁
𝑖=1

𝑦𝑖 log𝑦′𝑖 . (7)

Here 𝐶 is the number of classes of the white-listed public attribute,
𝑦 is the true public attribute class, and 𝑦′ is the predicted public
attribute class. This encoding architecture allows the surrogate
utility model to selectively compress the rich information embed-
ded in the raw sensor data to enhance the correlation with the
white-listed public attributes. Meanwhile, the limited latent feature
dimension forces the model to forget information about other at-
tributes that might be considered private. We pretrain the surrogate
utility model before training the diffusion model and use the latent
output 𝑧 to guide the diffusion process toward generating data that
only contains information about the white-listed public attribute.

4 EVALUATION
4.1 Black-listed Obfuscation Baselines
Baseline 1 - Anonymization Autoencoder (AAE) [15]: AAE is an
autoencoder-based obfuscationmodel. It usesmultiple neural network-
based regularizers (for public and private attributes) to control the
data reconstruction process of the autoencoder. The encodermodule
of AAE consists of four stacked convolutional layers, each followed
by a batch normalization layer. Its decoder module reverses the
encoder layers using batch-normalized transposed convolutional
layers. We use the code published by the authors on GitHub [2].
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Baseline 2 - ObscureNet [7]: ObscureNet is an obfuscation model
based on a conditional variational autoencoder (CVAE), which is
shown to achieve better privacy-preserving performance than other
obfuscation models that are based on autoencoders. The CVAE is
jointly trained with an auxiliary classifier that predicts the black-
listed private attribute through a minimax game. The private at-
tribute label is used to condition the decoder, enabling the user to
provide a random private attribute label in the obfuscation phase
to generate synthetic data that fools the auxiliary classifier. Note
that a dedicated CVAE must be trained to synthesize data that cor-
respond to each public attribute class. We implement ObscureNet
using the code published by the authors on GitHub [1] and use the
randomized obfuscation technique as our baseline.

4.2 Dataset
MobiAct is an IMU-based human activity recognition (HAR) dataset
that is collected using the 3-axis accelerometer, 3-axis gyroscope,
and orientation sensor embedded in a Samsung Galaxy S3 smart-
phone [4]. From a total of 66 participants that perform 12 activities,
we follow our second baseline [7] and select the same 36 users (20
male and 16 female) and 4 activities (walking, standing, jogging,
and walking up the stairs) for a fair comparison. We pre-process
the data by adopting standardization and segmenting the sensor
readings using a sliding window of 128 samples and a stride of 10
samples The dataset is divided using an 8:2 ratio for training and
testing. The MobiAct metadata contains three attributes that can
be used for evaluating the white-listed and black-listed obfuscation
models, namely the user’s activity, gender (binary), and weight
group (ternary). Following [7], we categorize a user’s weight into
one of the three weight groups, under 70 kg (group 0), between 70
and 90 kg (group 1), and above 90 kg (group 2). The distribution of
the 3 weight groups is 18:14:4. We consider activity as the public
attribute, and let gender and weight group be the private attributes.

4.3 Evaluation Metrics
We use two evaluation models, called intrusive and desired inference
models, to evaluate the performance of obfuscation models.

4.3.1 Impact on Privacy. We measure the privacy-preserving abil-
ity of an obfuscation model using the private attribute(s) classifi-
cation accuracy obtained by an intrusive inference model on the
obfuscated sensor data. The intrusive inference model is built upon
a convolutional neural network (CNN) consisting of 4 convolu-
tional layers followed by 3 fully connected layers. We pretrain the
intrusive inference model on raw sensor data, so its accuracy on
the obfuscated data is a measure of privacy loss. An ideal obfus-
cation model should generate obfuscated data that yield the same
intrusive inference accuracy as random guessing (50%/33.3% for
binary/ternary attributes).

4.3.2 Impact on Data Utility. We define the utility of data by mea-
suring the public attribute classification accuracy of a desired infer-
ence model on the obfuscated sensor data. The desired inference
model has the same architecture as the intrusive inference model,
and is pretrained on the raw sensor data. The sensor data obfus-
cated by an ideal obfuscation model should achieve nearly the same
desired inference accuracy as the raw sensor data.
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(b) Weight obfuscation

Figure 3: Intrusive inference accuracy on MobiAct dataset
for gender and weight obfuscation. AAE and ObscureNet are
trained to protect the gender attribute.

4.4 Privacy Preserving Performance
Given that AAE and ObscureNet are black-listed obfuscation mod-
els, we train both models to obscure the gender attribute and study
how the obfuscated data could protect the black-listed gender at-
tribute and the unspecified weight attribute.

Figure 3a compares the privacy-preserving performance of the
proposed data obfuscation model and the two baselines on gender
obfuscation, with results being averaged over 5 runs and the er-
ror bar indicating the standard deviation. For reference, we also
present the intrusive inference accuracy of the evaluation model
on the raw data, as discussed in Section 4.3. Among the three ob-
fuscation models, ObscureNet shows the best gender obfuscation
performance with an average intrusive inference accuracy and F1
score of 51.84%, which is pretty close to the level of random guess-
ing. AAE achieves an average gender inference accuracy (F1 score)
of 55.23% (54.06%), with higher standard deviation across the 5 runs.
This superb obfuscation performance is expected because both Ob-
scureNet and AAE are trained to synthesize data using a dedicated
classifier for the user-specified private attribute, i.e. gender. Our
proposed white-listed obfuscation model achieves an average gen-
der inference accuracy (F1 score) of 63.33% (63.22%), reducing the
gender inference accuracy on raw data by 34.2%. Additionally, our
model gives balanced protection for male and female users, achiev-
ing 61.78% and 65.28% intrusive inference accuracy, respectively.
Although the gender inference accuracy of our white-listed obfus-
cation model is slightly higher than the two black-listed baselines, it
still yields acceptable privacy protection for both genders, without
using the knowledge of the private attribute(s) during training.

Next, we study the effectiveness of protecting the weight group
attribute. In this case, we keep gender as the private attribute for
both AAE and ObscureNet, and study to what extent they can
protect another attribute that may be deemed private after the
obfuscation models are trained. As Figure 3b shows, the average
weight inference accuracy of the respective evaluation model on
the data obfuscated by AAE and ObscureNet is greater than 60%.
More importantly, we find that all data obfuscated by ObscureNet
and most data obfuscated by AAE are classified into the weight
Group 0, which is the majority weight group class, representing
the weight of 50% of all users in the training set. Although it can be
difficult for an adversary to infer the weight of users from weight
Groups 1 and 2, the two baselines fail to provide privacy protection
for the majority of users. The proposed white-listed obfuscation
model, however, shows the best weight obfuscation capability with
an average accuracy (F1 score) of 55.30% (49.97%). Similarly, weight

 

105



CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark Xin Yang & Omid Ardakanian

Activity Raw Data AAE ObscureNet Our Model

Walking 98.10 97.58 95.06 93.90

Standing 99.58 99.58 99.60 99.46

Jogging 99.74 98.26 98.44 98.36

Upstairs 95.14 75.14 92.78 80.34

Overall 98.80 97.71 97.35 96.59
Table 1: Activity recognition accuracy on MobiAct dataset.
Gender inference was black-listed when training AAE and
ObscureNet. Activity inferencewaswhite-listed in allmodels.

Group 0 suffers from the lowest privacy protection with an average
accuracy of 65.8%, yet it still reduces the risk of privacy leakage by
nearly 16% and 34% compared to AAE and ObscureNet, respectively.
The discrepancy in the weight obfuscation performance can be
partly attributed to the non-uniform distribution of weight groups
in the training dataset (18:14:4). As discussed in Section 5, we will
explore balancing the distribution of private attributes in the train-
ing dataset to achieve a more balanced obfuscation performance in
future work. To conclude, while the baselines can effectively pro-
tect data privacy when users clearly specify the private attribute,
they cannot conceal other attributes that the user might consider
private in the future. Our proposed white-listed obfuscation model
shows competitive obfuscation performance for multiple private
attributes, without requiring prior information about them.

4.5 Maintaining Data Utility
We study the utility of the obfuscated data and present the results in
Table 1. We keep the black-listed private attribute used to train AAE
and ObscureNet the same as in the previous section. We find that
the evaluation model for the public attribute (i.e. activity) performs
almost the same on the data obfuscated by all three models, with Ob-
scureNet achieving the highest HAR accuracy (F1 score) of 97.35%
(85.35%). Inspecting each activity class, ObscureNet outperforms
AAE and our proposed model mainly due to a better performance
in recognizing the ‘walking upstairs’ activity. This is due to the
fact that ObscureNet requires training a dedicated model for each
public attribute, whereas both AAE and our proposed approach
train a single model to obfuscate the data regardless of the value of
its public attribute. Therefore, AAE and our proposed model might
confuse activities with similar movement patterns, such as walking
and walking upstairs, in a small number of cases as we observed in
the confusion matrix. Nevertheless, the average HAR accuracy (F1
score) of the data obfuscated by AAE and our proposed model is
respectively 97.71% (87.91%) and 96.59% (82.43%), suggesting that
our model maintains data utility thanks to the guidance provided
in the diffusion process.

Overall, our results confirm that the proposed white-listed obfus-
cation model achieves performance that is on par with black-listed
obfuscation models with respect to data utility. Yet, it can effectively
obscure attributes that are not white-listed at training time and
enjoys more stable training than generative adversarial models.

5 DISCUSSION
Although our experiments demonstrate the feasibility of using the
diffusionmodel to enable white-listed sensor data obfuscation, there

remain many open challenges that need to be addressed in future
work to pave the way for providing long-term, future-proof privacy
protection. We discuss these challenges below:
• The private attribute distribution in the training set is postu-
lated to be sufficiently diverse and reasonably balanced. However,
when the private attribute distribution in the training set is imbal-
anced, the obfuscated data can contain a skewed private attribute
distribution and even reveal the distribution in the training set
(which is the case in our experiments of disguising weight). Our
future work aims to enable a more balanced sampling of the
private attribute regardless of the distribution in the training set.

• Our experiments only consider white-listing a single public at-
tribute (i.e., activity). In practice, service providers may need to
detect multiple public attributes to enable various services. Our
future work will explore white-listing multiple attributes. This
can be accomplished by incorporating multiple surrogate utility
models and concatenating the conditions, or cascading multiple
conditioning processes during the backward diffusion.

• The implicit entanglement of public and private attributes in the
sensor data creates non-trivial challenges for preserving user
privacy while retaining high data utility. Such challenges are
hard to tackle when public and private attributes are strongly
correlated. This calls for developing a technique that allows users
to navigate the privacy-utility trade-off.

• Recall that we use the output of the last encoding layer that comes
before the classification layer in the surrogate utility model to
condition the diffusion model. This is because we believe this la-
tent representation is strongly correlated with the public attribute
and our experiments suggest that it contains more information
about the sensor data compared to using the logits or the public
attribute class label, as in classifier-free guidance. Besides, it is
more computationally efficient than classifier-guided diffusion
since we do not need to compute the gradients of an auxiliary
model during the obfuscation process. Although a higher dimen-
sional latent representation provides more information about the
public attribute, it may also reveal more information about the
private attributes. More experiments are warranted to determine
the number of timesteps in the diffusion process and the best
learned representation to guide the diffusion model.

6 CONCLUSION
Privacy is an emerging topic in the CPS and IoT community due to
the recent advances in pervasive sensing and deep learning. In this
work, we explored a white-listing approach to sensor data obfusca-
tion using the guided diffusion process. Specifically, we conditioned
a denoising diffusion model using the latent features extracted by a
surrogate utility model. We evaluated this obfuscation model on
an HAR dataset and compared it with two state-of-the-art obfus-
cation models that require black-listing the private attributes. We
corroborated that by simply white-listing the user-specified pub-
lic attribute, our proposed model can effectively protect multiple
private attributes, without assuming the knowledge of the private
attributes.
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